Identification of sheep SNPs using Illumina sequencing and design of the Ovine SNP50 Beadchip

Brian Dalrymple on behalf of the ISGC
Three sources of SNPs used for the chip design

• Pilot 1,536 SNP chip SNPs
 • Sanger resequencing of regions amplified using primers designed from BAC-end sequences
 • Nine diverse animals
 • Validated using Illumina GoldenGate on 403 animals
 • >90% validation rate
 • 1142/1536 able to be positioned on sheep assembly v1.0
 • Use only validated SNPs
 • Aim to include as many of the sheep parentage panel as possible

• Illumina GA SNPs
 • 76,044 high confidence SNPs

• 454-FLX SNPs
 • ~270,000 high confidence SNPs called from a total of 3 X 454-FLX sequencing from six different animals
How did we discover the SNPs using the Illumina GA?
Reduced representational sequencing

- DNA pooled from 60 diverse animals – primarily female
- HaeIII digestion, 3 size fractions
 - 75-90 bp
 - 100-120 bp
 - 130-155 bp

Three fractions of genomic DNA
Sequence to ~20 x depth with Illumina GA (undersampled)
Illumina GA sequencing of samples

- 112 million reads from 3 Illumina GA runs
- 33 bases / read
- 3.7 Gb in total

<table>
<thead>
<tr>
<th>Total Reads</th>
<th>Non CC count</th>
<th>N Read Count</th>
<th>Ave qual <25</th>
<th>Reads Passed</th>
<th>Different seqs</th>
<th>Non singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>112,075,672</td>
<td>22,965,875</td>
<td>830,817</td>
<td>8,308,027</td>
<td>84,675,240</td>
<td>9,048,701</td>
<td>2,942,112</td>
</tr>
</tbody>
</table>

- Total different sequences 0.3 Gb
- Different sequences represented more than once = 2.9 million
 - Singletons likely to be sequencing errors
- At 33 bases per read, just under 0.1 Gb non singleton different sequence
- Added back the GG to make 35 bases of sequence prior to aligning back the genome assembly

Reads discarded

The final working set
Calling Illumina GA SNPs

- Aligned all different non singleton sequences to the sheep genome assembly v1.0
- Identified all differences between overlapping Illumina GA reads
 - Due to the previous filtering all SNPs have two or more reads for each allele

HaeIII fragments with sequences from both ends

Number of sequences

Solexa SNPs (A1 A3 B2 combined)

Solexa A1 A3 B2 Stocks

Graphical representation of the alignment and identification of SNPs.
Excluded all cases with more than one putative SNP in overlapping Illumina GA reads
Filtering putative SNPs on quality score

- Required the putative SNP base to have a quality score of ≥ 27 in at least one read for each allele.
- 76,044 SNPs called.

Illumina GA SNP

Discarded

Kept
Calling Illumina GA SNPs

- Number of SNPs depends on cut offs used
 - Reducing the cut offs significantly substantially increases the number of SNPs predicted
 - Prior to final quality cut off 149,405 putative SNPs had been called
- We decided to filter hard to maximise our confidence that our pool of putative SNPs for chip design were real SNPs
 - A similar philosophy had been applied to the 454 SNP calling to generate the set for inclusion in the chip design process
SNP distribution

- *HaeIII* sites are not randomly distributed in the sheep genome
 - perhaps not the best enzyme to have chosen!
- SNPs from Illumina GA sequencing follow *HaeIII* site distribution
- SNPs from 454-FLX sequencing more evenly distributed across the genome
 - more like the distribution of the sequence coverage
SNP validation

• So how likely are the SNPs called from the sequences to be real SNPs vs sequencing errors?
 • 64 randomly selected Illumina SNPs
 • 112 randomly selected 454 SNPs
 • tested on 63 DNA samples including those used for discovery and the International mapping flock using a Sequenom iPLEX system
 • Only two SNPs, one each type were not polymorphic
 • More stringently >80% passed QC (>85% genotype calls, HW equilibrium test, MAF>0.05 in the 63 selected animals)
 • Predicts > 85% validation on the Illumina Infinium system
 • Expect higher on the actual chip
 • Overall little difference between 454 and Illumina-derived SNPs
Designing the Ovine SNP50 beadchip
SNP chip design I

- **Spacing**
 - 60K SNPs evenly distributed across the genome
 - Ruled out favouring genes and genome regions very early on

- **Quality**
 - Assumed Validated Sanger 1536 SNPs > Illumina GA > 454-FLX
 - Probability that variation is a real SNP, not a sequencing artefact
 - However based on gut feeling rather than sound data for Illumina v. 454

- **Minor Allele Frequency**
 - Only known for Illumina GA and 1536 SNPs
 - But due to low coverage of sequencing a 454-FLX SNP is more likely to have a higher MAF
 - SNPs with MAF< 0.2 discarded

- **Use of chip real estate**
 - Infinium I v. II (SNPs)
 - Infinium II uses one position on chip v. two positions for Infinium I
 - Infinium I assay for AT and GC SNPs, ~17% of all SNPs
Not all SNPs can be converted to assays

- **Probe score**
 - Probability that assay will work on chip – we are using Illumina Infinium platform
 - All SNPs scored and those with a probe score < 0.8 discarded
SNP chip design II

- Region containing SNP should be unique
 - Checked using the 200 base flanking sequence used to design assay
 - But it is not a complete genome sequence
- Assay oligonucleotide should be unique in the genome
 - Rescreened assay oligonucleotides
 - But it is not a complete genome sequence
- Assay oligonucleotide should not contain other SNPs
 - Do not know all the SNPs that occur in the population of sheep
 - And it is not a complete genome sequence
Taking account of flanking SNPs

- All SNPs were positioned on the assembly
- All SNPs positioned within the assembly were replaced by their IUPAC codes
 - A/C → M, A/G → R, A/T → W
- Flanking sequence for each SNP was extracted from the assembly and were sent to Illumina for assay primer scoring
 - Illumina assay primer choice and scoring will reflect the existence of known SNPs and N’s in the flanking sequence
SNP Selection (SNPs in Range)

- From the last selected SNP:
 - The next SNP is selected within a specified range
 - The range is offset from the selected SNP by a specified step size
 - The “best” SNP is selected within this region
 - If there is more than one “best” SNP, the one closest to the center of the range is selected
- Parameters for step size and range were selected by titrating against the target number of SNP required for the chip design

<table>
<thead>
<tr>
<th>OAR1</th>
<th>Sanger 1536</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Illumina</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>454</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Last selected SNP
- Selectable SNPs
- Unselectable SNPs

60kb range
35kb step size
SNP Selection (SNPs not in Range)

- **From the last selected SNP:**
 - The next available SNP is located
 - The range is centered on this located SNP
 - The “best” SNP is selected within this region
 - If there is more than one “best” SNP, the one closest to the center of the range is selected
Selected SNPs

- 59388 total SNPs automatically selected
- 60717 total beads were filled
- SNPs manually added
 - 53 parentage SNPs (86/139 already selected)
 - 14 sequences had to be manually fixed to yield good Illumina scores
 - 1 sequence would not pass Illumina design
 - 16 SNPs had duplicate mappings to the genome, replaced with nearby SNPs
 - 15 mitochondrial SNPs added
 - Last 2 remaining SNPs were selected to lie within the largest remaining gaps in the genome assembly
The Ovine SNP50K beadchip final design

- Used all 60,800 available beads – 59,454 SNPs
- Mode spacing 35kb
 - still a few long gaps without any SNPs
- Average assay design score 0.975

<table>
<thead>
<tr>
<th>Source</th>
<th>Infinium I</th>
<th>Infinium II</th>
<th>Total</th>
<th>Percent of available SNPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanger</td>
<td>29</td>
<td>571</td>
<td>600</td>
<td>43%</td>
</tr>
<tr>
<td>454</td>
<td>1,049</td>
<td>39,125</td>
<td>40,174</td>
<td>14%</td>
</tr>
<tr>
<td>Illumina</td>
<td>268</td>
<td>18,401</td>
<td>18,669</td>
<td>25%</td>
</tr>
<tr>
<td>mtDNA</td>
<td>0</td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1,346</td>
<td>58,108</td>
<td>59,454</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>2.26%</td>
<td>97.74%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Distribution of gaps between SNPs

- Step size

Spacing [bp]

Frequency

Range size
Preliminary Ovine SNP50 beadchip parameters

- ~55K SNPs assayable on the chip
 - In line with illumina standards
- Based on sheep Hapmap project using a very diverse range of animals
 - ~54K SNPs producing genotype calls
 - ~53K Polymorphic in at least one animal (>98%)
 - ~52K MAF >0.05
 - Average MAF 0.3
- Overall very similar parameters to the horse and cow chips
- Selecting for MAF >0.2 appears to have generated a chip with a significantly higher average SNP MAF than horse and cow more in the 0.2 range
 - Although there may be other reasons for this
The sheep Hapmap project sample set

<table>
<thead>
<tr>
<th>Sample Set</th>
<th>No Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic Sheep (64 breeds)</td>
<td></td>
</tr>
<tr>
<td>- Africa (6 breeds)</td>
<td>145</td>
</tr>
<tr>
<td>- Asia (9 breeds)</td>
<td>250</td>
</tr>
<tr>
<td>- Europe (29 breeds)</td>
<td>1796</td>
</tr>
<tr>
<td>- Middle East (7 breeds)</td>
<td>201</td>
</tr>
<tr>
<td>- South America (3 breeds)</td>
<td>98</td>
</tr>
<tr>
<td>- USA and the Caribbean (4 breeds)</td>
<td>248</td>
</tr>
<tr>
<td>- Australia and NZ (6 breeds)</td>
<td>153</td>
</tr>
<tr>
<td>total</td>
<td>2891</td>
</tr>
<tr>
<td>5 Species of Wild Sheep</td>
<td>122</td>
</tr>
<tr>
<td>9 Outgroup Species</td>
<td>52</td>
</tr>
<tr>
<td>Validation, Mapping, Parentage</td>
<td>283</td>
</tr>
<tr>
<td>Total</td>
<td>3348</td>
</tr>
</tbody>
</table>
Some other observations

- 1502 SNPs assigned to the X chromosome
 - Two blocks of atypical X clustering (PARs)
 - 5 SNPs in succession between 3.58 and 3.81 Mb
 - 87 SNPs in succession between 7.77 and 13.9 Mb
 - 11 other atypical X clustering SNPs sporadic across the X
- 35 SNPs with typical X clustering pattern, but not assigned to the X chromosome in genome build
 - 28 on previously unassigned fragments of genome
 - 7 on other chromosomes
- A number of other blocks with a significantly large number of successive problematic SNP
 - Some explanation in genome organisation?
Is a SNP is a SNP is a SNP?

<table>
<thead>
<tr>
<th></th>
<th>On final chip</th>
<th>zeroed</th>
<th>Intensity only</th>
<th>Nearby polymorphism/deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanger</td>
<td>92.8%</td>
<td>0.35%</td>
<td>1.23%</td>
<td>8.11%</td>
</tr>
<tr>
<td>454</td>
<td>92.6%</td>
<td>1.5%</td>
<td>0.65%</td>
<td>6.98%</td>
</tr>
<tr>
<td>Illumina</td>
<td>92.2%</td>
<td>1.04%</td>
<td>0.51%</td>
<td>5.83%</td>
</tr>
</tbody>
</table>
And finally for now

- The number of SNPs with nearby polymorphisms that affect the assay in some way, around 6.6%, is higher than we expected, however many of these can still be used
 - Not clear if this is a downside of our sequencing, or SNP chip design approach, or some other issue
- The HapMap analysis is underway
- Hopefully some exciting association studies to come in the not too distant future.
Genome and SNP chip sections of the International Sheep Genomics Consortium

- **AgResearch NZ**
 - John McEwan
 - Gemma Payne
 - Nessa O’Sullivan
 - Tracey Van Stijn
 - Theresa Wilson
 - Rudiger Brauning
 - Alan McCulloch
 - Russel Smithies
 - Benoit Auvray

- **University of Otago**
 - Jo-Ann Stanton
 - Chrissie
 - Mark

- **Illumina**
 - Marylin Munson
 - Kimberly Gietzen
 - Christian Haudenschild

- **Baylor College of Medicine**
 - Richard Gibbs
 - Donna Muzny
 - Michael E. Holder
 - Lynne Nazareth
 - Rebecca L. Thornton
 - Christie Kovar

- **CSIRO Livestock Industries**
 - Brian Dalrymple
 - James Kijas
 - David Townley
 - Abhirami Ratnakumar
 - Wes Barris
 - Sean McWilliam

- **Genesis Faraday**
 - Chris Warkup

- **The CORE snp center**
 - Roxann Ashworth

- **sheepGENOMICS**
 - Rob Forage
 - Terry Longhurst

- **TIGR**
 - Ewen Kirkness

- **Uni Melbourne**
 - Jill Maddox

- **USDA**
 - Tim Smith

- **UNE**
 - Hutton Oddy

- **Uni Sydney**
 - Frank Nicholas
 - Herman Raadsma

- **Utah State University**
 - Noelle Cockett
 - Chunhua Wu
Genome and SNP chip sections of the International Sheep Genomics Consortium

isgcdata.agresearch.co.nz
www.sheephapmap.org www.livestockgenomics.csiro.au